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Abstract

Training Transformer models on long sequences in a distributed setting poses
significant challenges in terms of efficiency and scalability. Current methods are
either constrained by the number of attention heads or excessive communication
overheads. To address this problem, we propose StarTrail, a multi-dimensional
concentric distributed training system for long sequences, fostering an efficient
communication paradigm and providing additional tuning flexibility for communi-
cation arrangements. Specifically, StarTrail introduces an extra parallel dimension
and divides the peer-to-peer communication into sub-rings to substantially reduce
communication volume and avoid bandwidth bottlenecks. Through comprehensive
experiments across diverse hardware environments and on both Natural Language
Processing (NLP) and Computer Vision (CV) tasks, we demonstrate that our ap-
proach significantly surpasses state-of-the-art methods that support Long sequence
lengths, achieving performance improvements of up to 77.12% on GPT-style mod-
els and up to 114.33% on DiT (Diffusion Transformer) models without affecting
the computation results.

1 Introduction

Over the past decade, Transformer[38] models have made remarkable strides in diverse fields,
including computer vision (CV) and natural language processing (NLP). As the technology has
evolved, the ability to efficiently process long sequences with Transformer has emerged as a pivotal
challenge. For instance, in text summarization, the ability to handle extensive sequences is vital, as
the content to be summarized can range from lengthy chapters to entire books [17, 3]. Similarly,
chat-based applications, such as ChatGPT [1], require the capacity to process extensive dialogue
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histories to ensure conversational consistency. There are also applications in other fields like video
generation[5, 30] and protein structure prediction[15, 7].

The long context in the above scenarios has introduced several challenges for model training and
inference: 1) Efficiency and Adaptability. The challenge of efficiency predominantly lies in handling
long sequences that require quadratic computations during attention, and in addressing the large
amount of communication during distributed processing. 2) Memory. Besides the major obstacle
of storing the model weight and optimizer states, the activation has also exceeded the capacity of a
single GPU and risen as a new memory challenge due to the extreme sequence length. 3) Scalability.
Current Transformer models usually require thousands of GPUs for pre-training, even with datasets
of regular lengths. For longer sequences, ensuring an acceptable scaling speedup rate with both
the sequence length and the number of GPUs increasing is even more critical to reducing time and
economic costs.

Figure 1: StarTrail-2 and StarTrail-4 theo-
retically save around 50% and 75% of total
P2P communication volume for various se-
quence length and achieves up to 2x speedup
in end-to-end training

.

Traditional parallelisms such as Data Parallelism[12,
37, 22, 41], Tensor Parallelism[37, 39, 40], and
Pipeline Parallelism[13, 10, 23, 25] distribute the
model, input batch, and the optimizer states, but can
not directly address the large memory requirement
of extremely long sequences as the sequence length
dimension remains unchanged. To break through
this obstacle, Sequence Parallelism has been intro-
duced, splitting the input on the sequence length di-
mension. Mainstream Sequence Parallelism schemes
can generally be classified into two categories, and
are usually combined [11] to complement each other’s
drawbacks. Methods like DeepSpeed Ulysses[14],
which are based on all-to-all communication, offer ef-
ficiency but require the splitting of attention heads.
Consequently, these methods are limited in scala-
bility and can not be scaled to more devices than
the number of attention heads. On the other hand,
peer-to-peer communication methods[24, 20], such
as Ring Attention[24], do allow for near-infinite con-
text lengths; however, they require the transmission
of complete keys and values across all GPUs, leading
to significantly high communication loads. In sum-
mary, there remains a deficiency in communication-efficient methods that are capable of supporting
near-infinite context lengths. In this paper, we focus on solving the communication inefficiency of
ring-style sequence parallelism.

To solve these challenges, we introduce StarTrail, a novel near-infinite-context Transformer training
system with concentric multi-ring sequence parallelism that incorporates an additional parallel
dimension into the existing ring-style communication. Specifically, instead of including all GPUs
in a single parallel group as done in Ring Attention [24], StarTrail groups the GPUs into teams
and divides the peer-to-peer communication within these teams. This approach fosters an efficient
communication paradigm and provides extra tuning flexibility for communication arrangements.
With very little additional memory cost, StarTrail parallelism significantly reduces the peer-to-
peer communication volume, as shown in Figure 1. Compared to previous works, StarTrail is not
limited in supported sequence length by attention heads like DeepSpeed Ulysses[14] and Megatron
Sequence Parallelism[18], and also shows better communication efficiency and scalability than Ring
Attention[24]. We perform experiments on mainstream Transformer models, including GPT-style[33]
and DiT-style[31], conducting performance and scaling tests across various computing clusters.
Experiment results indicate that our StarTrail system outperforms Ring Attention by up to 77.12% on
the GPT model and up to 114.33% on the DiT model, showcasing its efficiency and scalability.
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2 Background and Related Works

2.1 Long Sequence Training and Sequence Parallelism

The key mechanism behind these Transformer-based models is attention[38], which captures the text
feature by calculating the attention score between every two single tokens. However, the sequence
length can reach hundreds of thousands, when dealing with multi-round chatting, or high-resolution
long video generation. It then becomes necessary to distribute the sequence across multiple GPUs.
This distribution helps to reduce both the memory and computation demands on any single device.
This strategy is also known as sequence parallelism. Presently, Sequence parallelism can be divided
into two main categories: attention-head-sharding-based and peer-to-peer-communication-based. The
former involves distributing the attention heads of multi-head attention across multiple GPUs, whereas
the latter resembles a distributed version of FlashAttention, relying on peer-to-peer communication
to transfer keys, values, and intermediate statistics.

2.1.1 Ring-peer-to-peer-communication-based

Figure 2: An example of Ring Attention
Computation on 16 GPUs in two nodes. The
Communication is largely limited by the
inter-node bottleneck.

The primary method in peer-to-peer-communication-
based strategies is Ring Attention[24], which is also
the main baseline of this work. Introduced in 2023,
Ring Attention[24] innovatively partitions the se-
quence dimension and utilizes a ring-style peer-to-peer
(P2P) communication pattern to transfer Keys and Val-
ues across all GPUs. Each GPU receives the key and
value matrices from the preceding rank, updates the lo-
cal attention score, and then forwards them to the next
rank, as is shown in Figure 2. This method employs
an online-softmax and updates attention scores incre-
mentally, allowing the computation of attention scores
without retaining the full sequence length. Thus, it po-
tentially supports infinite context, provided sufficient
computing resources are available. However, the requirement for the same number of rounds of P2P
communication as the number of GPUs renders this approach less efficient in environments with
high-latency communication.

(a) StarTrail-2 reduces 60% P2P communication
volume on 16 GPUs compared with ring attention.

(b) StarTrail divides one ring into four concentric sub-rings, with every two connected with
collective communication.

Figure 3: An overview of the StarTrail Training System

2.1.2 Attention-Head-Sharding-Based

There are two representative methods, DeepSpeed-Ulysses and Megatron Sequence Parallelism in
this category. DeepSpeed-Ulysses[14] transitions from sequence parallelism to a method akin to
tensor parallelism with two all-to-all communication. It divides the query, key, and value matrices
across the attention heads, thereby preserving the original attention computation structure. Megatron
Sequence Parallelism[18] focuses on minimizing memory usage and reducing the necessity for
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activation recomputation rather than efficiency. The two methods both rely on the number of attention
heads to split the sequence, thus limited in scalability, especially when employing techniques like
grouped-query attention (GQA) [2] or multi-query attention (MQA) [36]. As these two sequence
parallelism methods are orthogonal to the ring-based method, they are usually combined with ring
attention to enable longer sequences.

In this paper, we focus on optimizing ring-style sequence parallelism, noting that integrating it with
DeepSpeed-Ulysses Parallelism does not interfere with the underlying ring process.

3 StarTrail Training System

Figure 4: An example of StarTrail Attention on 64 GPUs. Each team member forms a sub-ring with
members with the same local rank from other teams in the same ring communication group, reducing
the communication volume of each team member by 75%.

3.1 Motivation

Through observation, we identify two main drawbacks of Ring Attention. First, the communication
overhead is exceedingly high because every GPU in the system must send and receive keys and
values for nearly the entire sequence length before completing the attention computation. Second,
variations in bandwidth between and within computing nodes can cause communication bottlenecks.
As illustrated in Figure 2, the bandwidths between GPUs 3 and 4 and between GPUs 11 and 12 are
lower than those between other GPUs in the ring. Despite this, the system is forced to operate in a
complete circle, which can result in unnecessary idle times for other GPUs. To solve these drawbacks,
we develop the StarTrail training system, which we will detail in the following section.

3.2 StarTrail Attention

Figure 5: Meanings of the symbols that are used
in this paper

P The number of GPUs
C The parallel size of StarTrail (team size)
H The hidden dimension size of the Transformer blocks
N The total number of tokens within the whole sequence
B The training batch size
W The communication bandwidth between GPUs
L The communication latency between GPUs

As discussed in the previous section, a major
limitation of Ring Attention is the extensive
amount of peer-to-peer (P2P) communication
required, which becomes problematic in envi-
ronments with weak connections between com-
puting nodes. We enhance the ring sequence
parallelism by introducing an additional dimen-
sion. The fundamental idea of StarTrail is akin
to a divide-and-conquer strategy. During atten-
tion, each token must compute its attention score
with every other token in the sequence. While
Ring Attention passes keys and values along a
ring of P GPUs over P − 1 iterations, our ap-
proach introduces the concept of a team. In this setting, each team member interacts only with
a designated portion of the overall sequence, and the results are later aggregated using collective
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communication. Thus, StarTrail can be devided into three phases: preprocessing, ring-phase, and
postprocessing.

For preprocessing, we duplicate the queries within a team using an all-gather operation. This ensures
that when a GPU receives new keys and values, it can compute the attention scores for the entire
team’s queries. Similarly, gathering the keys and values allows us to reduce the number of P2P
communication iterations by transmitting longer sequences per iteration. Following the preprocessing,
we enter the ring-style communication phase. With the number of GPUs in one team being C,
CN/P tokens are exchanged in each iteration, and each GPU is responsible for computing N/C

tokens. This leads to a number of iterations of N/C
CN/P = P

C2 , within a smaller ring, which we refer
to as a subring. For convenience, we group P

C2 adjacent teams into a team group for subring
communication, where GPUs sharing the same local team rank form the subring. An initial P2P
communication step is executed to ensure that each team group has access to the complete set of keys
and values for the sequence (details are provided in the Appendix). After completing the subring
iterations, each GPU holds 1/C of the overall computation result for its team. With the help of
online softmax, we then apply a simple reduce-scatter to combine these results while eliminating
the duplicate tokens, which we refer to as the postprocessing. Throughout the attention process,
asynchronous communication is employed alongside the early launch of communication kernels to
maximize the overlap of computation and communication tasks. Now we will delve into more details
in the StarTrail training process.

3.2.1 Configurations of StarTrail Parallelism

In the StarTrail system, GPUs are grouped into Teams to coordinate computation and communication
tasks more efficiently. StarTrail introduces an additional parameter, C, which determines the replica-
tion factor of the input and, consequently, the number of GPUs within each team. The range of C
is from 1 to

√
P . When C equals one, the algorithm falls back to Ring Attention. When C equals√

P , the algorithm becomes a completely collective-communication-based one with no rings. When
1 < C <

√
P , it becomes a structure with multiple rings looping concurrently.

Algorithm 1 StarTrail Attention Block (Forward)

Require: Input sequence x, Linear Function query, key, and value, attention parallelism size c,
global rank r, global size gs, team process group pg, init send/recv target rsend and rrecv

1: compute the gathered qteam,kteam, vteam = AllGather_QKVmatmul(query, key, value, x, pg)
2: launch the asynchronous send and receive request

reqsend and reqrecv, sending kteam, vteam to rsend and receiving knext, vnext from rrecv
3: get the ring P2P target rnext and rlast with get_P2P_ranks(r, gs, c)
4: initialize attention score O, extra statistics lse to zero. // lse stands for log-sum-exp
5: for 1 ≤ i ≤world_size/c2 do
6: wait for reqsend and reqrecv
7: kcurrent = knext, vcurrent = vnext
8: launch reqsend to send kcurrent and vcurrent to rnext, launch reqrecv to receive knext and vnext

from rlast
9: calculate lse, O =

forward_iteration(lse, O,qteam,kcurrent, vcurrent)
10: end for
11: compute Ofinal =ReduceScatter_combine(lse, O, pg)
12: return Ofinal

Forward Propagation. In Figure 4, we have an example of one team of four GPUs out of all the
64 GPUs performing StarTrail-style attention. Each training iteration begins with the dataloader
splitting the entire input sequence of length N into N/P sub-sequences, which are then loaded onto
each GPU. As previously mentioned, the next step involves computing the queries, keys, and values.
These are computed separately via matrix multiplication, followed immediately by the launch of the
all-gather kernel, which gathers the above QKVs within the team, allowing for the overlap of up to
two-thirds of the communication with computation.

Once this phase is complete, each GPU within the team possesses the same Q, K, and V, each of a
length of CN

P . To distribute the communication and computation tasks among the team members,
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we divide the original workload based on four specific ranks assigned to each GPU. These ranks
determine each GPU’s partners and position within the P2P ring, as is shown in Figure 6.

Figure 6: An example of ring initialization
process of 8GPUs and 4 sub-rings in Star-
Trail.

Following the setup, the Keys and Values are dis-
patched to their designated locations within the cluster
to establish the initial sub-ring, setting the stage for the
multi-ring iteration phase of StarTrail attention. Given
that each sub-sequence is CN

P long and each GPU is
tasked with computing the attention score for 1

C of the
whole sequence, it results in N/C

CN/P − 1 = P/C2 − 1

rounds of communication. This implies that there are
P/C2 GPUs in one ring.

The iteration process involves storing the log-sum-exp
(lse) and intermediate output O, which are updated
step by step. Queries are retained locally, while Keys
and Values circulate through the ring via P2P communication. After completing the iterations, each
team member accumulates the attention scores for the entire team’s sub-sequence of Queries with
1/C of the Keys and Values from the full sequence.

A simple reduce-scatter operation is then employed to amalgamate the intermediate results and
distribute them among the team members. Each GPU ultimately contains the final attention score for
its portion of the sequence over the entire sequence.

Backward Propagation. The major distinction between backward and forward propagation is the
inability to calculate queries independently during the backward phase. Unlike forward propagation,
the backward phase requires the complete set of keys and values to calculate the gradient for queries,
and vice versa. To manage this, we have structured the gradient calculation into two loops: the key
& value outer loop and the query inner loop. In the outer loop, gradients for keys and values are
tracked and maintained fixed on the corresponding GPUs within the sub-rings; these gradients do
not transfer between GPUs. The inner loop, however, handles the gradients for queries, which start
initialized as zero and are circulated along the sub-rings together with the Queries themselves. During
each iteration, the approach mirrors the backward computation method used in FlashAttention[8],
where the updated gradient of the current query shard is passed to the next GPU in the ring, while the
gradients for keys and Values are retained for subsequent query shards.

3.2.2 Theoretical Analysis

During the analysis, we will employ a case study using the StarTrail system with an attention parallel
size of C = 4 on a llama-30B model, which consists of 64 layers. For this model, referred to as
model M, the batch size = B is set to 1, the sequence length = N to 65536, the hidden dimension =
H to 6656, and the number of GPUs = P to 64. Additionally, the computation will utilize bfloat16
precision.

Communication Analysis. Let’s analyze the communication overhead within one forward Trans-
former block on a single GPU. For Ring Attention, the communication is primarily due to the ring
P2P loop. As the total number of iterations done is P − 1, the total communication overhead can be
calculated as:

(P − 1)(
2BNH

PW
+ L) =

2BNH(P − 1)

WP
+ (P − 1)L (1)

and this overhead can be partially overlapped with the attention computation.

For StarTrail, the communication overhead comes from both collective and P2P. The collective
overhead for all-gather and reduce-scatter is:

4BNH(C − 1)

PW
(2)

while the P2P communication can be similarly computed as:

(
P

C2
− 1)(

2CBNH

PW
+ L) =

(P − C2)2BNH

CPW
+ (

P

C2
− 1)L (3)
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The advantages of StarTrail over Ring Attention during the ring-P2P phase are evident in three
main aspects: 1) Reduced Communication and Latency: Ring Attention requires C times more
communication than StarTrail, significantly increasing the bandwidth requirement across the entire
cluster. For the llama 30B model M, the total communication volume of ring P2P communication
and collective communication volume for Ring Attention and StarTrail can be computed as 1.625
GB and 0.152 GB(collective) + 0.406GB (P2P) = 0.558GB. Furthermore, while Ring Attention
necessitates P − 1 iterations per attention block, StarTrail only requires P

C2 − 1, reducing the latency
overhead by around C2. 2) Localized Communication: In scenarios like those depicted in Figure
3, StarTrail’s ring P2P communication can be confined within the same computing node, where
bandwidth is typically much higher than between computing nodes. Conversely, Ring Attention
demands inter-node communication during every iteration, which can be less efficient. 3) Enhanced
Overlap of Communication and Computation: During each iteration, the communication volume
of StarTrail is C times higher than that of Ring Attention, while the computational volume during
attention is approximately C2 times greater. This higher computation-to-communication ratio makes
it easier for StarTrail to overlap P2P communication with computation, enhancing overall efficiency.

Memory Analysis. In this section, we estimate the theoretical peak memory requirements necessary
to store the model weights, activations, and optimizer states. Our implementation utilizes the Adam
Optimizer [16], bfloat16 precision, and Zero-2 optimization [34]. We name the memory cost for the
model and optimizer as Mm+o. As for the activation, we refer to the size of one single activation of a
sub-sequence on one GPU as

A =
B ×N ×H

P
(4)

As we use the checkpointing scheme from [20], a model of Y layers needs to save Y + 1 activations
as checkpoints. Now we calculate the approximate peak memory after Q, K, and V are already
calculated and before the attention computation at the last layer of the whole model. For Ring
Attention and StarTrail, the peak memories are:

PMRing = Mm+o + (Y + 4)A (5)

PMStar = Mm+o + (Y + 3C + 1)A (6)
, where C is the StarTrail attention dimension. And for the example model M, the peak memory
would be Mm+o+68A and Mm+o+77A, and the extra memory cost compared with Ring Attention
is a lot less than 13.2%, while the P2P communication volume is reduced by about 75%. In a word,
the extra memory cost is acceptable as a tradeoff for the communication reduction.

4 Evaluation

Table 1: Cluster and Model Configurations. All GPUs are connected with NVLink with computing
nodes.

GPU dev.× node Mem. (GB) inter-node bandwidth
H100 8× 8 80 8*400Gbps InfiniBand
A100 16× 2 40 100Gbps Ethernet
A100 8× 4 40 100Gbps Ethernet
A100 4× 8 40 100Gbps Ethernet

Model #Heads #Layers Dim.
GPT 3B 12 16 4096
GPT 7B 32 32 4096
DiT 1B 24 24 1536

The computational resources we use in the experiments include a local Nvidia H100 cluster with eight
nodes and three Nvidia A100 clusters, as listed in table 1. We utilize two model types of total three
settings, as listed in table 1. For the DiT(Diffusion Transformer) model, we use similar configurations
as those in Stable Diffusion 3[9]. We utilize the backbone Diffusion Transformer only, without other
components like the text and image encoders. During training, both models use bfloat16 precision
and a batch size of 1 to accommodate longer input sequences.

In the evaluation section, we aim to answer three major questions: 1) How much improvement in
throughput can StarTrail bring? Additionally, how adaptable is StarTrail to clusters with both good
and poor inter-node connections? 2) Is the additional memory cost incurred by StarTrail acceptable
considering the throughput improvement it offers? 3) How does StarTrail perform in scenarios of
weak and strong scaling? Specifically, does it outperform Ring Attention when scaled to handle
longer inputs?
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Figure 7: Throughput evaluation of Ring Attention and StarTrail on 32 GPUs from three different
clusters. We place the performance of StarTrail with both C=2 and C=4 in the figure. The configura-
tions are marked in the titles of the sub-figures. For instance, A100_40GB_8(1B, 512K) represents
that the experiment is on machines with 8 Nvidia A100 40GB GPUs in each node, the model used
has one billion parameters, and the sequence length is 512k.

4.1 Throughput and Adaptability

Our first experiment aims to assess the performance of StarTrail and Ring Attention across different
clusters with varying environments, testing the adaptability of both methods. There are several factors
influencing the efficiency of ring-style attention computation:

Theoretical Computation-Communication Volume Ratio: Primarily determined by the sequence
length used during training. Attention computation exhibits a computational complexity of O(N2 ·H),
whereas P2P communication complexity is O(N ·H). Thus, the model configuration does not impact
this ratio; only the sequence length does. A larger N increases the computation-communication ratio,
facilitating easier overlap of communication with computation.

Compute Capability and Connectivity of GPUs: The computing overhead, given a specific
volume, affects the computation-communication overhead ratio. Higher compute capabilities make
overlapping more challenging. We utilize two sets of GPUs in this evaluation: Nvidia A100 40GB
and Nvidia H100 80GB, with the latter offering significantly higher theoretical tflops on bf16
computations. Connectivity is considered in two parts: intra-node and inter-node. Our clusters are
equipped with NVLink, ensuring robust intra-node communication. For inter-node communication,
our H100 nodes leverage InfiniBand with eight adapters per node for superior inter-node bandwidth,
whereas the Google Cloud servers use Ethernet. The diversity in node configurations (8-GPU and
16-GPU nodes) allows us to assess adaptability across different topologies. This evaluation not only
highlights the inherent differences between the schemes but also tests their flexibility in various
hardware settings.

The results of our evaluation are illustrated in Figure 7. We measure throughput in thousands
of tokens per second. To better demonstrate how to select the optimal configuration of StarTrail
under each condition, we included two configurations, Star-2 and Star-4, in the figure. We omit
configurations with lower performance for clarity. As indicated in the figure, in all six settings, at least
one configuration of StarTrail achieves higher throughput than Ring Attention, with 2.114x, 1.414x,
1.629x, 1.425x, 1.360x, 1.199x, 1.771x, and 1.346x the throughput of Ring Attention. This advantage
is primarily due to the additional parallel dimension that StarTrail introduces. Unlike Ring Attention,
which requires inter-node P2P communication in each iteration, StarTrail’s P2P communication is
mostly confined intra-node, except for initial data transfers. This experiment clearly demonstrates
StarTrail’s superior performance across various environments. Another observation is that the optimal
configuration for StarTrail may vary depending on the environment, reflecting differences in the
computation-communication ratio and the trade-offs between collective and P2P communication.

8



Figure 8: The normalized relative memory cost of different configurations of StarTrail compared
with Ring Attention on different clusters.

4.2 Memory Consumption

The memory results, displayed in Figure 8, reveal that for the configurations yielding the highest
throughput, StarTrail consumes between 7.9% and 30.79% more GPU memory than RingAttention,
while achieving 1.199x to 2.114x throughput. Moreover, in scenarios involving larger models, the
relative increase in memory consumption due to QKV duplication diminishes. This reduction is
explained by equation 6 This phenomenon is further evidenced by the fact that the extra memory
ratio for experiments with the 7B model is significantly smaller than that for the 3B and 1B model.
Considering the substantial throughput gains provided by StarTrail, this tradeoff between memory
usage and efficiency is deemed acceptable.

(a) DiT Strong Scaling on Nvidia A100 40GB
GPUs. All configurations include inter-node com-
munication.

(b) GPT Strong Scaling on Nvidia H100 80GB
GPUs.

Figure 9: Strong scaling experiments with fixed sequence length of 128K.

4.3 Strong and Weak Scaling

In the scaling tests we carry out experiments for both strong and weak scaling. For strong scaling,
we fix the sequence length to 128K while increasing the number of GPUs from 8 to 64 for the GPT
model and from 8 to 32 for the DiT model. For weak scaling, we scale the sequence length from 128k
to 512k for the DiT model and from 64k to 512k for the GPT model proportionally increasing the
number of GPUs from 8 to 32. As is depicted in Figure 9 and 10, StarTrail shows obvious advantage
over Ring Attention as we increase the number of GPUs. The results for strong scaling can also
explained by the computation-communication ratio. When scaled to more GPUs, the local sequence
length on each GPU becomes smaller, and as explained the previous sections, makes it harder to
overlap the P2P communication with attention computation. The overall scaling performance is
limited by the nature of ring-style communication, but we still consider our improvement over Ring
Attention meaningful due to the necessity of using Ring-style Parallelisms during training.

In summary, StarTrail shows better scalability in both strong and weak scaling experiments, making
it a better choice for large-scale Transformer model training.

5 Conclusion

StarTrail represents an advanced near-infinite-context Transformer model training system, featuring a
communication-optimized concentric ring sequence parallelism scheme. Through experiments, we
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(a) DiT Weak scaling on Nvidia A100 40GB GPUs
of sequence length from 128K to 512K. All config-
urations include inter-node communication.

(b) GPT Weak scaling on Nvidia H100 80GB GPUs
of sequence length from 64K to 512K.

Figure 10: Weak scaling Experiments

demonstrate that our system not only achieves high efficiency across various training environments
but also excels under both strong and weak scaling conditions for both CV and NLP models. Current
limitations of StarTrail include that although orthogonal, we can still further improve the co-design
of StarTrail and hybrid parallelism in future works. In an era increasingly demanding longer contexts
for both NLP and CV, StarTrail is poised to make significant contributions to the industry and inspire
innovative research in academia.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have clearly claimed that we improved the efficiency of ring-style sequence
parallelism and provide analysis and experiments in the following sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: As mentioned in the conclusion, although orthogonal to other parallelism, we
have not consider the co-design with other parallelism for better performances.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not have any theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the open-source models and GPU configurations we used in
the experiments. The algorithm of the parallelism is also provided in this paper.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Our code is not currently available publicly, but we will prepare for open-source
if accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided all the details in the experiment sections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our experiment results are measured by measuring a large number of train-
ing iterations and taking the average. It is not suitable for our case to prove statistical
significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All details are mentioned in the experiment section.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We reviewed the NeurIPS Code of Ethics and this research conforms with the
guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is simply improving the training efficiency and has no societal
impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: We do not introduce any new model or dataset.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have credited the assets properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our key method is modifying the parallelism technique and is not related with
LLM itself.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Technical Appendices and Supplementary Material

A.1 Sequence Parallelism Dataloader
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Figure 11: A comparison between naive and
zigzag dataloader for 8 GPUs with attention
parallel dimension of 2. The corresponding
initialization can be found in Figure 6 with
the same configuration. The improvement
of efficiency from load-balancing increases
with the number of GPUs.

The causal masks present a challenge due to the
unbalanced computational load across GPUs: sub-
sequences at the beginning of a sequence require sig-
nificantly more computation than those at the end. To
address this imbalance and achieve load equilibrium
among GPUs, we modify the ZigZag scheme intro-
duced by [42], illustrated in Figure 11. The figure
illustrates the simplest case of zigzag load-balancing.
Notably, the effectiveness of this strategy improves
as the number of GPUs increases. This improvement
correlates with the expanding difference in compu-
tation volume between the first and the last token,
which escalates as the sequence length extends. This
approach ensures that the total workload on each
GPU is balanced, eliminating the need for additional
communication mechanisms like those employed in
DistFlashAttention[20].

A.2 Details in the training process

Apart from the attention process described in Algorithm 1, we would like do provide a few other
details to be more comprehensive. First, before the concentric ring attention, we need to initialize the
the Keys and Values and determine each GPU’s position within the rings.

Initially, for the setup stage, it is essential to establish the sub-rings by rearranging the activation
positions. Specifically, during forward propagation, the queries do not require rearrangement;
however, the keys and values must be transmitted to their corresponding positions in the ring prior
to commencing the loop. As illustrated in Figure 6 and algorithn, this initialization ensures that
each team member holds a different shard of keys and values. Moreover, it guarantees that no
two teams within the same ring possess identical keys and values. Initially, for the setup stage, it
is essential to establish the sub-rings by rearranging the activation positions. Specifically, during
forward propagation, the queries do not require rearrangement; however, the keys and values must be
transmitted to their corresponding positions in the ring prior to commencing the loop. As illustrated
in Figure 6 and algorithm, this initialization ensures that each team member holds a different shard of
keys and values. Moreover, it guarantees that no two teams within the same ring possess identical
keys and values.

Algorithm 2 get_init_send()

Require: inter-team rank rt, intra-team rank ra, inter-team dimension dt, intra-team dimension da

1: team group size = dt / da

2: target team group rank = ra
3: target team = target team group rank * team group size + rt // da

4: target device intra-team rank = rt % da

5: target global rank = target team * da + target device intra-team rank
6: return target global rank

After the initialization of activations, we can set up the rings by providing the GPUs their last and
next GPU within their rings, as is described in Algorithm 3.

A.3 StarTrail Runtime

StarTrail is written in PyTorch[29] and uses the PyTorch torch.autograd.function and NCCL[28]
backend for forward and backward implementation. StarTrail also employs multiple techniques
during runtime to improve its overall training efficiency.

Ingetrate Flash Attention. The StarTrail attention mechanism involves multiple iterations that loop
over Keys and Values, with each iteration still using traditional self-attention with corresponding
Query, Key, and Value (QKV). This approach enables StarTrail to incorporate flash attention ef-
fectively, extending its capability by preserving intermediate states across iterations. Additionally,
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Algorithm 3 get_P2P_config()

Require: inter-team rank rt, intra-team rank ra, inter-team dimension dt, intra-team dimension da

1: team group size = dt / da

2: self team group rank = rt
team group size

3: next team in group = (rt + 1)% team group size + team group size ×self team group rank
4: last team in group = (rt − 1)% team group size + team group size ×self team group rank
5: next device global rank = ra+ next team in group ×da
6: last device global rank = ra+ last team in group ×da
7: return next device global rank, last device global rank

Table 2: Supported Sequence Length of Ring Attention and StarTrail on one Nvidia A100 80GB
GPU.

Supported Seq Len on one 80GB A100 GPU
(K Tokens)

Model Size Length Ring Attention StarTrail

3B
128 ✓ ✓
256 ✓ ✓
512 ✓ ✓

7B
128 ✓ ✓
256 ✓ ✓
512 ✗ ✗

13B
128 ✓ ✓
256 ✗ ✗
512 ✗ ✗

StarTrail enhances the efficiency of the forward process with the help of torch JIT to fuse kernels
aside from flash attention.

Overlap communication with computing. In StarTrail attention, P2P communication and self-
attention computing are interleaved across iterations, each incurring considerable time. To mitigate
this, StarTrail employs a double buffering technique to asynchronously execute communication and
computing kernels, effectively overlapping these processes and enhancing GPU utilization.

Save recomputation with checkpoints. StarTrail adopts the checkpointing strategy introduced by
DistFlashAttn[20], placing checkpoints at the end of the self-attention phase rather than the FFN of
each transformer layer. This checkpoint placement effectively obviates the need to recompute the
self-attention forward process during the backward pass, avoiding redundant attention computation.

B Additional Experiment

To comprehensively evaluate the memory consumption of StarTrail and Ring Attention, we compared
the maximum supported sequence lengths of StarTrail with those reported in the Ring Attention
paper [24]. As shown in Table 2, although StarTrail requires slightly more memory, it still supports
sequence lengths commonly used in training tasks.

B.1 Discussion

B.2 Larger Batch Sizes and Models

We utilized small batches and model sizes in our experiments because these choices do not affect the
underlying improvements in communication efficiency and computation-to-communication ratio that
StarTrail provides. For larger batch sizes, both communication and computation scale proportionally,
leaving the overlapping ability unchanged. Similarly, while larger models involve more layers or
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larger hidden sizes, the key attention computations and corresponding ratios remain unaffected.
Hence, our conclusions naturally extend to scenarios with larger batches and models.

B.2.1 FlashAttention3 and Hopper GPUs

In addition to the original FlashAttention [8] used in our experiments, FlashAttention3 [35] has been
introduced, specifically designed for Hopper and newer Nvidia GPUs. For FP16 precision, which is
utilized in this paper, FlashAttention3 achieves a 1.5-2.0x speedup on Hopper GPUs. As discussed in
Section 3, reducing attention computation overhead results in more P2P communication not being
overlapped, further emphasizing the need to reduce communication volume. With the increasing
adoption of Hopper GPUs, the significance of the StarTrail system will also grow.

B.2.2 StarTrail and Other Parallelisms

Model Parallelism As is well known, tensor parallelism shards activations by attention heads during
attention computation, making it easily combinable with StarTrail with minimal effort. However,
when combined with tensor parallelism, the need for attention heads can limit the scalability of
head-based sequence parallel methods like DeepSpeed-Ulysses. Pipeline parallelism, on the other
hand, divides the model across layers without altering the computation patterns within Transformer
blocks, making StarTrail orthogonal to it.

Other Sequence Parallelism StarTrail is orthogonal with other attention-head-sharding-based
sequence parallelism approaches, such as DeepSpeed-Ulysses [14]. While DeepSpeed-Ulysses
distributes attention heads across different devices, StarTrail can independently partition activations
along the sequence length dimension. In future work, we can explore combining StarTrail with
DeepSpeed-Ulysses to expand the communication scheduling space, harnessing the scalability of
StarTrail alongside the efficiency of DeepSpeed-Ulysses.

In summary, StarTrail can be seamlessly integrated with other parallel training techniques, enabling
the creation of a hybrid distributed training system.

B.3 Other Related Works

Attention Optimization. Traditional full attention mechanisms necessitate O(n2) memory for
storing the outputs of QKT , leading to significant computational and memory demands. To address
these challenges within the GPU, several approaches have been devised to reduce both memory and
computational requirements. Memory-efficient attention[32] introduces a straightforward algorithm
that requires only O(1) memory relative to the sequence length, with an extension for self-attention
that needs only O(log n) memory. FlashAttention further minimizes I/O overhead and enhances
overall efficiency. Additionally, optimization methods specifically tailored for inference, such as
PagedAttention[19], are also being developed to improve the efficiency of attention computations. In
this work, we utilize FlashAttention within each iteration to reduce the computation overhead.

Long-Sequence Training Techniques. Sequence Parallelism[21] was initially introduced to en-
hance the efficiency of parallel long-sequence training. Ring Attention[24] improved communica-
tion efficiency through memory-efficient methods[32], supporting near-infinite sequence lengths.
DeepSpeed-Ulysses[14] employs attention head splitting to achieve high efficiency, though it is
constrained by the number of heads. Megatron Sequence Parallelism focuses on reducing memory
costs during Tensor Parallelism, while DistFlashAttention[20] features a load-balance scheme and a
novel gradient checkpoint method. Our work builds on these innovations, introducing a system that
supports large-scale training with an efficient communication scheme.

Techniques for Distributed Model Training. Distributed model training encompasses two primary
areas: 1) Memory Management: Various techniques aim to conserve GPU memory during dis-
tributed training, such as mixed precision training[26] and the ZeRO series[34]. In this work, we
implement ZeRO-2 to manage optimizer states and gradients efficiently. 2) Hybrid Parallelism:
Frameworks like Megatron[27] and Colossal AI[4] integrate multiple forms of parallelism. There
are various existing Parallelism techniques like Pipeline Parallelism[13, 10, 23, 25] and Tensor
Parallelism[37], which can be combined with StarTrail Parallelism to facilitate large-scale training.
We are also considering the integration of additional frameworks such as [6] to enhance overlapping
capabilities in future implementations.
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