
Hanayo: Harnessing Wave-like Pipeline Parallelism for Enhanced
Large Model Training Efficiency

Ziming Liu∗
liuziming@comp.nus.edu.sg

National University of Singapore

Shenggan Cheng∗
shenggan@comp.nus.edu.sg

National University of Singapore

Haotian Zhou
zhou0000@comp.nus.edu.sg

National University of Singapore

Yang You
youy@comp.nus.edu.sg

National University of Singapore

ABSTRACT
Large-scale language models have become increasingly challenging
and expensive to train. Among various methods addressing this
issue, Pipeline Parallelism has been widely employed to accom-
modate massive model weights within limited GPU memory. This
paper introduces Hanayo, a wave-like pipeline parallelism strategy
that boasts a concise structure and practical applicability, along-
side a high-performance pipeline execution runtime to tackle the
challenges of pipeline strategy implementation. Hanayo mitigates
the issues of pipeline bubbles and excessive memory consumption
prevalent in existing schemes, without resorting to model dupli-
cates as in Chimera. Our evaluation, conducted on four distinct
computing clusters and involving both GPT-like and BERT-like
architectures with up to 32 GPUs, demonstrates up to a 30.4 %
increase in throughput compared to the state-of-the-art approach.

CCS CONCEPTS
• Theory of computation→ Parallel algorithms; •Computing
methodologies → Neural networks..

KEYWORDS
distributed deep learning, pipeline parallelism, large scale training,
high performance computing
ACM Reference Format:
Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You. 2023. Hanayo:
Harnessing Wave-like Pipeline Parallelism for Enhanced Large Model Train-
ing Efficiency. In The International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC ’23), November 12–17, 2023,
Denver, CO, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3581784.3607073

1 INTRODUCTION
Over the past decade, deep learning has made significant strides
in numerous fields, including Computer Vision (CV) and Natu-
ral Language Processing (NLP). Among various architectures, the
∗Both authors contributed equally to this research.

SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0109-2/23/11.
https://doi.org/10.1145/3581784.3607073

transformer [35] has emerged as a prominent model due to its
exceptional sequence modeling capabilities. Recent studies have
demonstrated that transformers not only surpass recurrent neural
networks in NLP [5, 27] but also outperform many convolutional
neural networks in CV [6, 20]. It has been shown that substantial
performance gains can be attained by utilizing large-scale datasets
in conjunction with expansive transformer-based models.

In the past six years, the number of model parameters has in-
creased 40-fold every 18 months, while in the last three years, it has
grown 340-fold within the same period. Currently, models can con-
tain hundreds of billions of parameters [3]. This rapid increase in
model parameters outpaces the memory expansion of accelerators,
necessitating the use of large-scale GPU supercomputing clusters
for training. As a result, the time and financial costs of training
large models have escalated, becoming almost prohibitive, as ex-
emplified by the Megatron-Turing NLG 530B model [34] developed
by Microsoft and NVIDIA, which required approximately three
months to train on over 2,000 A100 GPUs.

Several challenges arise from the continuous growth in model
sizes, including: 1) Memory Wall, where the model’s parameter size
significantly exceeds the storage capacity of a single accelerator,
often by several orders of magnitude; 2) Scaling Wall, which arises
when training large models necessitates the use of thousands of
accelerators, resulting in complex parallel patterns and extensive
communication that can lead to bottlenecks in scaling; 3) Com-
putational Wall, referring to the immense computational power
demanded by large models and massive datasets; and 4) Devel-
opment Wall, where the intricate parallel strategies and manual
control of communication processes render the development of
large model training exceedingly difficult.

Facing the above challenges, the mainstream approach for train-
ing large models involves employing model parallelism techniques.
In contrast to data parallelism, where each device contains a full set
of model parameters, model parallelism distributes the parameters
across different devices. There are two primary model parallelism
methods: tensor parallelism and pipeline parallelism.

Pipeline parallelism focuses on parallelization at the layer level,
with layers assigned to different devices. While tensor parallelism
is associated with significant communication costs, pipeline paral-
lelism relies on peer-to-peer communication for transferring inter-
mediate activations, resulting in considerably lower communication
overhead. This makes pipeline parallelism an indispensable strategy
for large model training. For instance, in the parallel strategy em-
ployed by Megatron-LM [22], tensor parallelism is utilized within

This work is licensed under a Creative Commons Attribution‐NonCommercial‐
ShareAlike International 4.0 License.

https://doi.org/10.1145/3581784.3607073
https://doi.org/10.1145/3581784.3607073
https://doi.org/10.1145/3581784.3607073
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3607073&domain=pdf&date_stamp=2023-11-11

SC ’23, November 12–17, 2023, Denver, CO, USA Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You

nodes (intra-node), while pipeline parallelism is applied across
nodes (inter-node).

Nonetheless, the current pipeline parallelism approach has sev-
eral limitations that diminish the overall efficiency of large model
training: 1) Bubble, which refers to the idle time of devices due to
computation dependencies in the pipeline across different devices;
2) Communication Overhead, even though pipeline parallelism em-
ploys point-to-point (P2P) communication, its overhead remains
considerable; 3) Memory Consumption, some pipeline schemes at-
tempt tomitigate the bubble issue by relying onmodel replication[18].
However, this approach exacerbates the already stringent GPU
memory constraints, which might further complicate the training of
large models; 4) Hybrid Programming Paradigm, since pipeline par-
allelism is incompatible with the prevalent SPMD (single program,
multiple data) programming paradigm for distributed training, it
poses challenges for flexible pipeline process scheduling within
modern deep learning frameworks.

To address the aforementioned challenges, we introduce Hanayo,
a unified pipeline parallelism framework featuring a wave-like
pipeline scheme. 1)To break the memory wall, Hanayo decouples
the reduction of bubble ratio with model replication, requiring the
same level or lower memory compared with mainstream methods;
2)For scaling, the Hanayo unified framework enables the expression
of mainstream pipeline parallel algorithms in a universal manner
while facilitating further generalization that enables us to automat-
ically scale pipelines to more devices; 3)For computation, we lower
the overall bubble ratio with our unique pipeline scheme, wave
pipeline, reducing the idles and achieving high throughput with the
same computing power; 4)For easier development, we orchestrate
the training process using an action list, allowing for support of
virtually all pipeline parallel algorithms within the runtime sys-
tem. Besides, we have also implemented efficient communication
schemes with techniques such as pre-fetching.

In summary, our paper presents the following contributions:

• We introduce awave-like pipeline scheme that achieves a low
bubble ratio and high performance in large model training.
It can achieve increasingly higher throughput as the number
of waves increases.

• Hanayo proposes a unified framework for pipeline paral-
lelism. Through theoretical analysis, we obtain a unified
performance model for pipeline parallelism.

• In the design and implementation of the runtime system, we
aim to decouple the runtime system from specific pipeline
parallel algorithms. Utilizing the action list, Hanayo’s run-
time system can support nearly all pipeline parallel algo-
rithms while optimizing performance through features such
as asynchronous communication.

• We conduct experiments with mainstream GPT-style and
BERT-style models, performing performance tests for vari-
ous model sizes on four different computing clusters. Exper-
imental results demonstrate that Hanayo achieves up to a
30.4% performance improvement over the current state-of-
the-art pipeline parallelism implementation, Chimera.

2 BACKGROUND
During deep neural networks (DNN) training, the main computa-
tions are divided into two processes: forward propagation (FP) and
backward propagation (BP) . In forward propagation, we calculate
the loss of different samples operated by the model using the objec-
tive function. In backward propagation, we backpropagate the loss
using the chain rule of differentiation to calculate gradients, which
are used to update the parameters[16, 32].

devices=8 devices=32
0

20

40

60

80

100

Bu
bb

le
 R

at
io

(%
)

Gpipe
DAPPLE
GEMS
Chimera (replica=2)
Hanayo (wave=2)
Hanayo (wave=4)

Figure 1: The theoretical bubble ratio of synchronous
pipeline schemes

2.1 Parallelism Technique for Training
As DNN training data is often massive, for example, GPT-3 was
trained with 45 TB of text data[37]. Therefore, we need to use Data
Parallelism (DP) [11, 17, 33, 41] to accelerate DNN training. In for-
ward propagation, each device has a complete and identical model
for computing. In backward propagation, each device computes
gradients and synchronizes them through all-reduce to update the
parameters.

However, as the size of DNN models grows, it becomes imprac-
tical to train them using data parallelism alone due to the limited
memory on each device. Model parallelism has been introduced to
address this issue. Model parallelism distributes the model param-
eters to different devices to achieve lower memory consumption.
Based on the different ways of dividing the model parameters, we
can generally categorize Model Parallelism into Tensor Parallelism
(TP)[33, 36, 38] and Pipeline Parallelism (PP)[7, 10, 12, 18, 39, 40].

Tensor parallelism means splitting a tensor into chunks along a
specific dimension and each device only holds a part of the whole
tensor while not affecting the correctness of the computation graph.
It involves distributing an operator’s parameters to different devices.
Each device then computes a local result based on its assigned data
slices. Finally, at the end of the operator computation, collective
communication (such as all-gather or all-reduce) is inserted to
obtain the final result. Despite its advantages, tensor parallelism
comes with a higher communication overhead because of the need
for synchronizing communication after each split tensor operation.
This effect is particularly pronounced during cross-node training,
where the low communication bandwidth can significantly reduce
the training speed.

To reduce the communication volume between nodes, pipeline
parallelism has been proposed. Pipeline parallelism partitions the
model at the layer level, while also partitioning the mini-batch into

Hanayo: Harnessing Wave-like Pipeline Parallelism for Enhanced Large Model Training Efficiency SC ’23, November 12–17, 2023, Denver, CO, USA

micro-batches. Each worker is treated as a pipeline stage for the
forward propagation or backward propagation computation of a
micro-batch.

2.2 Synchronous Pipeline Parallelism
To enable a more comprehensive analysis of the pros and cons of
state-of-the-art pipeline methods, we have standardized the sym-
bolic representation, which is presented in Table 1. In this section,
we will focus on the major synchronous pipeline parallelism algo-
rithms, such as GPipe [12], DAPPLE [7], and Chimera [18], and we
will also introduce some asynchronous approaches.

Table 1: Meanings of the symbols that are used in this paper

S The number of pipeline stages
B The number of micro-batches in a single iteration
D The number of replicated pipelines
P The number of workers used in the pipeline
W The number of waves in a single forward/backward

iteration(=S / (2 * P))
𝑀𝑤 Memory consumption for the weights of one stage
𝑀𝑎 Memory consumption for the activation of one stage
𝑇𝐹 Time cost for a complete forward pass

(all forward stages added together) divided by P
𝑇𝐵 Time cost for a complete backward pass

(all backward stages added together) divided by P
𝑇𝐶 Time cost for a single P2P communication

The most classic pipeline parallel algorithm is GPipe, as illus-
trated in Figure 3(a). In this example, the minibatch is divided into
four micro-batches for the four devices shown in the figure. The
four devices pipeline the forward computation of the four micro-
batches and then pipeline the backward computation of the four
micro-batches after the completion of all forward computations.
The pipeline is divided into three main parts. The first part is at
the beginning of the forward computation, where a device must
wait for the previous device to complete the calculation of its corre-
sponding microbatch. The second part is between the forward and
backward computations, where a device is waiting for the corre-
sponding microbatch to be calculated after completing the forward
computation. The third part is after the backward computation is
finished, where the device that finished the backward computation
must wait for the flush. GPipe is a relatively simple and efficient
pipeline parallel algorithm. However, it requires all intermediate
activations of the microbatch to be saved during training, which
results in relatively high memory consumption.

DAPPLE utilizes the One-Forward-One-Backward (1F1B) sched-
ule to enhance the GPipe, making it one of the most widely used
pipeline parallelism methods in practical applications. As shown
in Figure 3(b), 1F1B adjusts the forward and backward order of
different microbatches on different devices. By calculating the back-
ward earlier, 1F1B releases the intermediate activation stored on
the device as early as possible, providing it with a certain mem-
ory advantage over GPipe. However, we have observed that the

memory consumption of 1F1B is uneven across devices: the peak
memory usage does not drop on the first device, while it can signifi-
cantly decrease on the last device. And Megatron-LM has proposed
some improvements to the 1F1B algorithm by introducing inter-
leaving, which divides the model and data more finely, creating
more opportunities for overlapping and thus reducing the bubble
ratio.

Chimera introduces a novel bidirectional pipeline parallelism
technique that achieves a smaller bubble ratio and is currently one
of the most effective methods for pipeline parallelism, with more
balanced memory consumption. In Figure 3(c), we show a typical
Chimera pipeline with 2 model replicas on 8 devices, using blue
and yellow blocks to mark the forward and backward propagation
going downward, and green and orange for those going upward.
By storing another slice of the model on each device, a worker
can do computation going upward while waiting for the activation
from the pipeline going downward. The two pipelines can thus
fill in each other’s bubbles. In this way, Chimera exhibits a lower
bubble ratio compared to prior pipeline methods, indicating higher
theoretical training efficiency. Furthermore, the use of bidirectional
pipeline reduces memory consumption imbalances across differ-
ent cards. However, due to its support for bidirectional pipeline,
Chimera needs to store a duplicate copy of model parameters in
both directions, resulting in twice the memory overhead of other
methods. Further analysis and discussion of Chimera can be found
in the next section.

In Figure 2, we present a comparative analysis of different ap-
proaches with respect to GPU memory consumption and bubble
ratio, highlighting their respective advantages and disadvantages.
Notably, we factor in the impact of remaining communication time
after overlap when calculating the bubble ratio, resulting in a more
accurate assessment. The up red arrow in Figure 2 denotes a higher
ratio or consumption, which implies inferior performance. Con-
versely, the down green arrow signifies a lower ratio or consump-
tion, indicating superior performance. K in bubble ratio of Chimera
is defined as 𝐾 = 𝑃2

2 − 𝑃 .

2.3 Asynchronous Pipeline Parallelism
The synchronous pipeline parallelism algorithm performs a flush at
each computation step, allowing the training process to maintain
consistency by using the same version of model parameters for
each batch. To achieve a lower bubble ratio, recent works have
proposed asynchronous pipeline parallelism algorithms, such as
PipeDream [10], WPipe [40], and PipeMare [39].

Unlike synchronous pipeline parallelism, asynchronous approaches
remove the flush and allow for more relaxed dependency con-
straints. As a result, they tend to have a lower bubble ratio and
higher performance, as illustrated in Figure 4. However, asynchro-
nous optimization can impact the convergence process of train-
ing. Although there have been works to improve asynchronous
convergence[42], they often come with extra computation or mem-
ory overhead. So we focus only on synchronous pipeline parallelism
in this work. Nevertheless, the strategies and optimizations we
propose can also be applied to asynchronous pipeline parallelism
implementation.

SC ’23, November 12–17, 2023, Denver, CO, USA Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You

Figure 2: Comparison of different SOTA approaches
Green arrows indicate better performance

3 HANAYO UNIFIED FRAMEWORK
3.1 Motivation
As previously discussed, pipeline parallelism faces two significant
challenges, namely memory consumption and computation effi-
ciency. While GPipe provides a simple and easy-to-implement solu-
tion, it suffers from high activation consumption and a high bubble
ratio. DAPPLE addresses the memory consumption challenge by
modifying the computation schedule, resulting in lower memory
consumption. However, it still struggles with a high bubble ra-
tio. Chimera proposes a promising solution with its bi-directional
pipeline approach that orchestrates multiple pipelines and achieves
an impressive low bubble ratio. But Chimera requires model repli-
cas, which may not be feasible for limited GPU memory or large
models. This leads us to consider an alternative approach: can we
rearrange the computation scheme so that we can benefit from the
low bubble ratio without extra memory consumption?

3.2 Transforming into Wave-like Pipelines
We have found a simple way that leads us out of this dilemma. We
know that the high efficiency of Chimera can be primarily attrib-
uted to its bidirectional pipeline structure, allowing pipelines in
different directions to compensate for bubbles. The reason for em-
ploying model replication is that, in the current pipeline scheduling,
the same micro-batch must continuously perform calculations and
communication in the same direction. Therefore, when introducing
calculations in another direction, another set of models must be
stored on the GPU. To address this issue, we only need to enable a
single pipeline to change direction during the computation process,
transforming it into a wavy-shaped pipeline.

Here we have a typical bi-directional Chimera pipeline with a
depth of 4, as illustrated in Figure 5. The darker and brighter blocks
represent computations performed by the two pipelines with differ-
ent directions, which we will refer to as 𝑃𝑖𝑝𝑒𝑏𝑟𝑖𝑔ℎ𝑡 and 𝑃𝑖𝑝𝑒𝑑𝑎𝑟𝑘 ,
respectively. In this specific case, micro-batch 0 and 1 are 𝑃𝑖𝑝𝑒𝑏𝑟𝑖𝑔ℎ𝑡
as their forward propagation goes downward, while micro-batch
2 and 3 are 𝑃𝑖𝑝𝑒𝑑𝑎𝑟𝑘 as their forward propagation goes upward.
As depicted in the figure, if we swap all the 𝑃𝑖𝑝𝑒𝑏𝑟𝑖𝑔ℎ𝑡 blocks on
devices P2 and P3 with the corresponding 𝑃𝑖𝑝𝑒𝑑𝑎𝑟𝑘 blocks located

at symmetrical positions on devices P0 and P1, we obtain two iden-
tical wave-like pipeline structures. Since the order of computation
remains unchanged and the communication overhead is reduced
due to the local communication introduced by this swap operation,
we can infer that the efficiency of these two wave-like pipelines is
at least as good as, if not better than, the original 4-stage Chimera
configuration. By adopting this approach, we eliminate the need
for model replication in the pipeline implementation, and the repli-
cas employed by Chimera can now be considered as standard data
parallelism. There is also an example in figure3(c) and figure3(d).

Why we call such pipeline scheme wavy may not be quite ob-
vious in this case, so we have another example in figure 6(a). We
mark the whole training process of micro-batch 1 with the color
blue and red. There are four "V"s in the whole training process for
each micro-batch, which look exactly like waves. In this paper, we
define the number of "V"s in a forward or backward propagation
process the number of waves. So we would say that there are two
waves on 8 devices in figure 6(a).

To ensure a fair and convenient comparison, we will measure
Chimera after transforming it into its corresponding wave-like
form, which we will call Chimera-wave in this paper. As Chimera-
wave can optimize Chimera by reducing cross-communication, it
enables us to view model duplication as an expansion of the data
parallelism scale, allowing us to measure Chimera while consuming
the same amount of memory for model weights as other methods.

3.3 More waves For Lower Bubble Ratio
Having successfully eliminated model duplication, we can now
focus on reducing the bubble ratio. During the calculation of the
bubble ratio for current pipeline schemes, we observe that with
a fixed number of devices, the factors that influence the bubble
ratio (or the total idle time in the pipeline) are 𝑇𝐹 , 𝑇𝐵 , and 𝑇𝐶 . As
𝑇𝐶 is fixed in a given cluster environment, we can investigate the
remaining factors, which represent the time cost of a forward stage
and a backward stage. By partitioning the model into smaller stages,
we can achieve improved performance.

In the wavy pipeline scheme derived from Chimera, the number
of stages is already twice as much as that of regular pipelines. What

Hanayo: Harnessing Wave-like Pipeline Parallelism for Enhanced Large Model Training Efficiency SC ’23, November 12–17, 2023, Denver, CO, USA

0 1 2 3P0
0 1 2

0
0

P2
P3

P1
1

3
2 3

2 31 0
0

0
0

1
1

1
1

2
2

2
2

3
3

3
3

1 2

1 2 3 4

Mw

Ma

(a) GPipe

0 1 2 3P0
0 1 2

0
0

P2
P3

P1

0 1 1 2 2 3 3
0

0
0

1 2 1
3

3
1

1

2
2

2

3
3

3

1 2

1 2 3 4

Mw

Ma

(b) DAPPLE

x0 1 2 3P0

0 1 2

0

0

P2

P3

P1 4

4

5

5

54

4

4

45 2 6

2

3

3

3 7

6

6

65

5

7

7

6

6

7

0

5

5 1

6

6

7

0 1

2

0 7

0

7 2

7 3

1 2

1 2

3

3

3

1

14

4

4 01 6 2 7 3 4 1 5 2 6 3 750

4 1 06 7 2 3 1 24 5 3 6 75 0

4 5 6 0 1 07 2 1 3 2 4 3 5 6 7

4 5 6 7 0 10 21 2 3 3 4 5 6 7

P4

P5

P6

P7

1 2

2 4 6 8

Mw

Ma

(c) Chimera

0 1 2 3P0
0 1 2

0
0

P2
P3

P1 0
0

1
1

10
0

0
01 2 2

2
3

3
3 3
2

2
21
1
3

3
2

2
3

0
1

1 1
2

2

3

0 1
2

0 3
0

3 2
3 3

1 2
1 2

3
3

3

1
10
0 1 2 3 4

Mw

Ma

1 2

(d) Hanayo with one wave

0123P0
012
0
0

P2
P3

P1 0
0

1
1 2
2
3

1
10
0

2

0
1
11

3
33
2
2
2
1
1
1

3
3
32
2
2
21

3

2

3
3
3
2

2
2

3
1
1

1
0
0
00

0
0
0 0

0
0

0

1
1

13

2
23
3

2
20 1 1

0
0

03
3
1

1

2

0

3
3 3
2

2
21 1
1

13
0

0
0 0 1

3
32
2

3

2
21
10

0
0
3

3
32
2

2
2

1
1

3
3

3
3

1 2 3 4

Mw

Ma

1 2

(e) Hanayo with two waves

Figure 3: Synchronous Algorithms of Pipeline Parallelism and their peak memory consumption. The forward propagation
process is marked green and the backward propagation process is marked orange. Blue and yellow are also used in Chimera to
mark the two directions in it. Back propagation is illustrated twice as long as forward propagation according to the training
experience. And we use purple and pink blocks to represent the P2P communication that goes downward and upward. The
numbers on the blocks show which of the micro-batches is being processed. Each unit block in 𝑀𝑤 represents a whole model
weight divided by the number of devices, and one unit block in𝑀𝑎 represents one intermediate activation.

if we continue doubling it? This can be easily achieved by incorpo-
rating more waves into the pipeline. In Figure 3(e), the number of
stages increases from eight to sixteen as the number of waves rises

from one to two. It is evident that the sizes of all the bubbles result-
ing from waiting for peer devices’ computation are halved, while
the total computation remains unchanged. Although the number

SC ’23, November 12–17, 2023, Denver, CO, USA Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You

P0

P1

P2

P3

0

0

0

0 0

1

1

1

1

2

2

3

1

0

0

0

1

1

1

2

3

3

2 2 3

2

2

2

3

3

3

3

Flush

(a) Synchronous Pipeline Parallelism

P0

P1

P2

P3

0

0

0

0 0

1

1

1

1

2

2

3

1

0

0

0

1

1

1

2

3

3

2 2 3

2

2

2

3

3

3

34

4

4

4 4

5

5

5

5 5

6

64

6

(b) Asynchronous Pipeline Parallelism

Figure 4: Comparison of synchronous and asynchronous
Pipeline Parallelism

P0
P1
P2
P3

0

0
0

0 0 1

1
1

1
0

0
0

Flush

Chimera
4-Stage

2
2

2
2

1
3

3
3

32
2

2
2
1

1
13

3
3

3

P0
P1

0
0

1
1 0

0

Flush

Hanayo
2-Stage, 2-DP

0
0

1
10
0 1

11
1

P0
P1

0
0

1
1 0

0

Flush

0
0

1
10
0 1

11
1

P0
P1

P2
P3

0

2

0

2 2 3

1
1

3
2

0
0

Flush

2
2

0
0

3
3

3

1
10
0

2
2
3

1
11

1

3
3

no
 communication

Figure 5: A 4-stage Chimera pipeline can be transformed into
two one-wave pipelines with a 2-stage Data Parallel without
extra overhead.

of times that we do communication is now doubled, most of them
can be overlapped by the computation, and the additional bubbles
caused by cross-communication are more than compensated for by
the overhead saved by smaller bubble size, yielding a significantly
lower bubble ratio.

Furthermore, we can continue to increase the number of waves
as long as there are sufficient layers within a single stage to divide.
In Figure 6(b), we present an example where we expand the number
of waves to four, resulting in the bubble sizes being halved once
more. The implementation is quite straightforward, as the structure
of the intermediate waves remains identical. Similarly, Hanayo
can be scaled to accommodate more devices by employing the
corresponding number of mini-batches during the training process.
In Figure 6(a), we implement Hanayo on 8 devices with the number
of waves set to two. We have highlighted micro-batch 1 to illustrate
the direction of a single computation process. The large number of

stages may appear confusing; however, there is no need to grapple
with the structure, as we have developed an ingenious pipeline
framework that can automatically deploy the structure with any
desired number of waves or devices. We will discuss this framework
in greater detail later.

3.4 Theoretical Analysis
In this section, we delve into the bubbles that impact the perfor-
mance of Hanayo. There are four distinct types of bubbles in a
training iteration, as illustrated in Figure 7. The bubbles in Zone A
primarily result from idle waiting for forward activation from peer
workers and the overhead of forward activation transmission. Thus,
the size of a single bubble in this zone is given by 𝑇𝐹 /2𝑊 +𝑇𝐶 , as
the forward time cost is reduced by a factor of 2𝑊 . The bubbles in
Zone B mainly arise from the discrepancy between the overheads
of forward and backward propagations. Consequently, the bubble
size in B is calculated as 𝑃−𝐿𝑅

2𝑊 (𝑇𝐵 − 𝑇𝐹) + 2𝑇𝐶 , where LR repre-
sents the local rank. As for bubble type C, it is caused by backward
propagations and the corresponding communication, resulting in
bubble sizes of 𝑇𝐵 + 2𝑇𝐶 and 𝑇𝐵 +𝑇𝐶 . Lastly, bubbles due to cross-
communication occur when using the NCCL[25] backend, which
requires batching cross-communication together before initiation
to prevent deadlock. By summing all four types of bubbles, we can
compute the final bubble ratio:

1
𝑊
𝑇𝐵 + (1 + 2𝑊 + 2

𝑃
+ 𝑃−2

3)𝑇𝐶
𝑃

𝑃−1𝑇𝐹 + (1
2𝑊 + 𝑃

𝑃−1)𝑇𝐵 + (𝑃−22 + 4𝑊)𝑇𝐶
(1)

Assuming 𝑇𝐵 = 2𝑇𝐹 and disregarding 𝑇𝐶 , we can rewrite this equa-
tion in a more suitable form as 2𝑃−2

3𝑃𝑊 +𝑃−1 . This expression decreases
with an increasing number of waves, demonstrating the efficiency
of such wave-like structures. Moreover, since we do not employ
model replicas or alter the computation order, our𝑀𝑤 and𝑀𝑎 re-
main consistent with those of other mainstream methods. In figure
1, we show the theoretical bubble ratio for the pipeline schemes.
You can see a sharp drop in Hanayo’s bubble ratio with an increased
number of waves.

4 HANAYO RUNTIME
In this section, we present the design and implementation of our
runtime system, which primarily consists of the pipeline execution
engine decoupled from the pipeline parallelism scheduling algo-
rithm and communication optimization, including prefetching and
asynchronous communication.

4.1 Implementation Scheme
Our implementation scheme is inspired by the widely-used dis-
tributed deep learning optimization library, DeepSpeed [30]. Deep-
Speed employs a set of instructions, such as ForwardPass, Back-
wardPass, and SendActivation, in its schedulers. Workers use an
interpreter to read the instructions and execute the corresponding
actions. We observe that some of these instructions are not well-
suited for more complex structures like Hanayo or Chimera. To
address this, we break down the instructions into smaller granular-
ities and augment them with target device rank information and
local module rank (indicating which part of the model should be
utilized for the given instruction).

Hanayo: Harnessing Wave-like Pipeline Parallelism for Enhanced Large Model Training Efficiency SC ’23, November 12–17, 2023, Denver, CO, USA

0

0 1
1

1
1

2

2 3P0
P1
P2
P3

20
0

0 1 2P4
0 1 2P5

0 1 2P6
0 1P7

2

0 1

4 5 6 7
3 4 5 6

3 4 5
3 4

3

0
0

0
0

0
0

0 0 1 1 2 2 3 3

2 2 3 3

4 4 5 5 6 6 7

1
4 4 5 5 6 6 7 7

3
4

5
6

7

1
1

1
1

1

2
2

2
2

2
2

3
4

5
6

7
0

4
5

6
7

0
1

3
3

3
3

3
3

5
6

7
0

1
2

4
4

4
4

4
4

6
7

0
0

0

1
1

1
15

5
5

5
5

5
2

3

67 7
6

6
6

6
6

2
3

4

7
7

7
7

7

2
2

20

3
4

5

0 10 1 2 2 3 3 4 4 5 5 6 6 7 7

07
7

5
5

5
5

6
6

64
4

4
42
2

2

1
1

1
1

1

3
3

3 3
0

0

0
0

0
0

0
0

0
0

0
0

1
1 1

1
1

1
1

1
1

1

7
2
6
3
5 4

4
4

4

3

6
6

3
3

3
0

2

5
65

7
7

7
7

2
2

5
6

7
0

2 3 4 5 6 73

4

4
2

2
2

2
2

2
21

5
5

5
3

3
3

3
3

3
32

6
6

54 4
4

4
4

4
4

4 43

5
5

5
5

5
5

5 5

6
6

6

7
7

7
7

7
7
6

6
6

6
6

6
6 6

7
7

7
7

7
7

7
0

0
0

0
0

0
0

1
1

1
1

1
1

10

2
2

2
2

2
2

2

3
3

3
3

3
3

3
0

0
0

0
0

0
0

4
4

4
4

4
4

4

5
5

5
5

5
5

51
1

1
1

1
1

1
11

2
2

2
2

2
2

2
2

6
6

6
6

6
6

63
3

3
3

3
3

3
37

7
7

7
7

7
7

74
4

4
4

4
4

4
40

0
0

0
0

0
0

05
5

5
5

5
5

5
5

1
1

1
1

1
1

16
6

6
6

6
6

6
62

2
2

2
2

2
2

27
7

7
7

7
7

7
73

3
3

3
3

3
3

3

4
4

4
4

4
4

4
4

5
5

5
5

5
5

5
5

6
6

6
6

6
6

6
6

7
7

7
7

7
7

7
70

0 1
1

1
1

2

2 3
20

0

0 1 2
0 1 2

0 1 2
0 1

2

0 1

4 5 6 7
3 4 5 6

3 4 5
3 4

3

0
0

0
0

0
0

0 0 1 1 2 2 3 3

2 2 3 3

4 4 5 5 6 6 7

1
4 4 5 5 6 6 7 7

3
4

5
6

7

1
1

1
1

1

2
2

2
2

2
2

3
4

5
6

7
0

4
5

6
7

0
1

3
3

3
3

3
3

5
6

7
0

1
2

4
4

4
4

4
4

6
7

0
0

0

1
1

1
15

5
5

5
5

5
2

3

67 7
6

6
6

6
6

2
3

4

7
7

7
7

7

2
2

20

3
4

5

0 10 1 2 2 3 3 4 4

07
7

5
5

5
5

6
6

64
4

4
42
2

2

1
1

1
1

1

3
3

3 3
0

0

0
0 1

7
2
6
3
5

0

Flush

(a) wave=2, devices=8

0

0 0
0
0
00 0

00
0
0 0

0
0
0 0

1 1
1

1
1

1
1
1

2 2
2

2 3
3
3
3 3
2
2
2

3
3
3

0 00
0

00
0 0

0
0

0 0
0

0
0

1 1 2 2 3 3 1 1 2 2 3 3
3

3
3

3
3

33
3

3 2
2

2

1
1

1

1
1

11

1
1

2
2

2 2
2

23
3

32
2

21
1

11

1 1
1

1
1
1

1

2
2

2
2

2
2

2
23

3
3
3 3

3
3

3

P0
P1
P2
P3

Flush

20
0

0
0 3

00
0
0

00
0
0
00

0
0

0 0

11
1

1
1

1
1
1

22
2

23
3
3
33
2
2
2

3
3
3

0 0
0

0
0 0

0
0

0 0
0

0
0

1 1 2 2 3 3 1 1 2 2 3 3

3
3

3
3

33
3

3 2
2

2

1
1

1

1
1

11

1
1

2
2

2 2
2

23
3

32
2

21
1

11

11
1

1
1
1

1

2
2

2
2

2
2

2
23

3
3
33

3
3

3

Flush

20
0

0
0 3

0 00 1 2 31 2 3
0 013 2 31 2
0 0132 31 2
002233 11 002233 11

0 0132 31 2
0 013 2 31 2

00 1 2 31 2 3
0

0 0
0

0
0 0

0
1 2 2 3 3 1

3
3

3 1
1

11

1
1

2
2

2 2
2

3
3

3

2
0

0 0
0

0
0 0

0
1 2 2 3 3 1

3
3

3 1
1

11

1
1 2

2 2
2

3
3

3

2 2

P0
P1
P2
P3

(b) wave=2 and wave=4, devices=4

Figure 6: Scaling Hanayo to more devices and waves

 C

C

C C

C C C

B

B B

B A

A

A

A

0 1 2 3P0
0 1 2

0
0

P2
P3

P1 0
0

1
1

10
0

0
01 2 2

2
3

3
3 3
2

2
21
1
3

3
2

2
3

0
1

1 1
2

2

3

0 1
2

0 3
0

3 2
3 3

1 2
1 2

3
3

3

1
10
0

Zone A

Zone A

Zone B

Zone B

C

 Zone C

Figure 7: The type of bubbles that exist in a typical Hanayo
wave-like pipeline

Unlike some pipeline frameworks that use hooks to establish
the relationship between different stages, our approach employs an
action list to store the instructions for each worker. The scheduler
on themaster node is responsible for generating the action list based
on a specific pipeline. We have provided scheduling algorithms for
existing mainstream pipeline schemes and Hanayo, and we also
offer interfaces for users to modify existing schemes or develop
their own.

4.2 Overlap by Prefetching
One of the main benefits of using such an action list is that the
workers can prefetch the next batch of data from peer devices.
Our approach employs the pre-fetching technique with asynchro-
nous communication functions. Before initiating a slice of com-
putation, the processor looks ahead to check the next receive
instruction and launches the subsequent receive request before
the current forward/backward propagation. This ensures that the
activation/gradient for the next round is ready by the end of the
current computation round. We know that the transmission of acti-
vation and gradients can be costly, especially for large models with
high hidden dimensions and computing clusters with poor inter-
connection. Under such conditions, one key to achieving higher
throughput is to maximize the overlap between computation and
communication. The prefetching technique employed by Hanayo
ensures the least number of bubbles caused by communication and
improves overall efficiency. In our implementation, we utilized the
NCCL[25] backend and Pytorch Distributed Library, as the NCCL
backend offers better support for GPU operations. Moreover, we
use the batch_isend_irecv function from the NCCL backend to
circumvent deadlock in cross-communication.

5 EVALUATION
Our experiments were primarily conducted in four environments:

• The LONESTAR6 cluster from the Texas Advanced Com-
puting Center (TACC). Lonestar6 comprises 560 compute
nodes and 16 GPU nodes. The A100 GPUs have 40 GB of
high-bandwidth memory. In each GPU node, there are three
GPUs, with GPU 0 on socket 0 and GPU 1 and 2 on socket 1.

• ACVM cloud server from Tencent that we rent. The GN10Xp
computing node we utilize features an Intel Xeon Cascade
Lake 8255C (2.5 GHz) CPU and 8 NVIDIA V100 GPUs with
32GB of memory. The GPUs are connected with NVLink[9],
and the interconnect configuration is described in the V100
architecture whitepaper[24].

• A local cluster with 8 NVIDIA A100 GPUs that have 80GB
memory. GPU 0 and 1, 2 and 3, 4 and 5, and 6 and 7 are
connected with NVLink.

• A local cluster with 8 NVIDIA A100 GPUs that have 80GB
memory. The GPUs are fully connected with each other with
NVLink.

The models we use for evaluation include two variants of BERT and
GPT-3. The BERT-style model consists of 64 layers, 64 attention
heads, and a hidden size of 2560, while the GPT-style model has
128 layers, 16 attention heads, and a hidden size of 1024.

We implemented all mainstream synchronous pipeline schemes,
including GPipe, DAPPLE, Chimera, and Hanayo. For each setting,
we determined the best parallelism configuration by adjusting the
devices used in data parallelism and pipeline parallelism to maxi-
mize throughput. As previously mentioned, we evaluate Chimera’s
performance after transforming it into its wave form to ensure
fairness with other methods that only use one set of model weights.
The model replicas used by Chimera are considered as additional
data parallelism.

In the following section, we focus on addressing the following
questions:

• What is Hanayo’s memory consumption like in practice? Is
it suitable for GPUs with smaller memory capacities?

• How adaptable is Hanayo to different computing environ-
ments? Can it maintain its superior performance when faced
with various computational power and GPU interconnection
configurations?

• How does Hanayo perform in weak scaling settings, where
the computing resources and tasks increase simultaneously?

SC ’23, November 12–17, 2023, Denver, CO, USA Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You

• How does Hanayo perform in strong scaling settings, where
the goal is to use more computing resources to accelerate a
fixed?

It needs to be mentioned that the Chimera that we compare with
in evaluation is the optimized wave version, Chimera-wave, which
has better performance than Chimera with 2 model replicas. More
details are in section 3.2.

0 1 2 3
10

20

30
 Bert model with 64 layers (P=8, N=4, B=2, H=2560)

0 1 2 3
0

20

40

M
em

or
y

Co
ns

um
pt

io
n

(G
B)

 Bert model with 64 layers (P=16, N=2, B=4, H=2560)

0 1 2 3

10

20

 GPT model with 128 layers (P=8, N=4, B=2, H=1024)

Gpipe DAPPLE Chimera Hanayo

0

20

40

 GPT model with 128 layers (P=16, N=2, B=4, H=1024)

Figure 8: The distribution of peak memory consumption for
GPipe, DAPPLE, Chimera, and Hanayo during the training
of Bert and GPT model on 32 GPUs of the TACC Lonestar6
cluster

5.1 Memory Consumption
For the two models mentioned earlier, we measured the peak mem-
ory distribution across the 32 GPUs utilized during training. The
primary factor we need to focus on is the highest peak memory.
Although memory consumption varies from device to device, the
ability of a scheme to fit within a certain cluster is often determined
by the highest peak memory. The computation schemes of GPipe
and DAPPLE are relatively similar; however, GPipe requires saving
the activation of all micro-batches on every device, resulting in a
higher memory consumption for each device. Our findings show
that GPipe and DAPPLE have comparable highest peak memory
values, but GPipe caused Out of Memory (OOM) errors in two
settings. In contrast, Chimera and Hanayo, which benefit from a
schedule that consumes the activation as soon as it is generated,
achieve lower highest peak memory values.

Another essential aspect to consider is balance. A pipeline scheme
with a more balanced memory consumption enables better work-
load distribution across computational tasks, maximizing the work
done on each worker simultaneously and, as a result, achieving
higher throughput. GPipe’s memory consumption is fairly balanced,
with an average variance of 1.33. However, this low variance comes
at the expense of high average consumption. DAPPLE and Chimera
do not exceed the memory limit, but their average variances are

16.85 and 2.86, respectively, which are higher compared to other
methods. Our proposed method, Hanayo, maintains the variance
as low as 1.44 while exhibiting a similar average consumption as
Chimera.

In summary, Hanayo exhibits a similar level of peak memory
consumption as the state-of-the-art pipeline schemes while main-
taining a more balanced memory consumption profile. This balance
leads to higher GPU utilization and, ultimately, improved overall
performance.

5.2 Adaptability Across Computing Clusters
Our first throughput evaluation aims to test the performance of
different pipeline schemes in various computing cluster environ-
ments. As observed in Figure 3, the bubble ratio is determined by
the communication overhead and the overhead of forward and
backward propagation. Despite our efforts to maximize overlap,
some communication cannot be covered by computation. In prac-
tice, the computation overhead is typically determined by device
computing power, while the communication overhead is influenced
by various factors such as GPU connections with NVLink[9], GPU
interconnection topological structure, and the bandwidth between
computing nodes for cross-node training. In essence, communi-
cation overhead is difficult to predict and can vary significantly
under different conditions. Therefore, we must evaluate pipeline
schemes across diverse environments to assess their adaptability
and robustness.

The four selected environments are representative of different
use cases. The TACC Lonestar6 computing cluster represents super-
computers or large-scale computing clusters used by companies; the
Tencent TVMGPU cloud server represents cloud servers commonly
employed for large model training; and the other two clusters are
typical local servers used in university labs or small companies.
The GPU types include NVIDIA A100 80GB, NVIDIA A100 40GB,
and NVIDIA V100 32GB, connected with four distinct topologi-
cal structures, ensuring diversity in both computation power and
communication conditions.

Results are displayed in Figure 9. We limited the number of de-
vices to 8 for this comparison, enabling us to assess performance
across clusters. We experimented with two settings: pipeline paral-
lelism only, and a combination of pipeline parallelism size 4 with
data parallelism size 2. We did not use a smaller pipeline paral-
lelism size due to the large number of parameters in the BERT
model. GPipe and DAPPLE maintain similar throughput across
the experiments, as their pipeline stage scheduling primarily dif-
fers in activation consumption rather than total time overhead.
Chimera outperforms these two methods by approximately 20% in
the eight experiments, owing to its bi-directional design. In con-
trast, Hanayo offers an additional dimension, the number of waves,
which we can adjust in the experiments. We explored all possible
wave numbers and selected the best-performing one as our result.
In the eight settings, Hanayo consistently outperforms Chimera by
15.7%, 30.4%, 23.2%, 29.9%, 8.2%, 17.1%, 24.6%, and 28.0%, thanks
to the wave structures that repeatedly halve the bubble size. This
demonstrates Hanayo’s advantage over other pipeline parallelism
schemes, regardless of the environment.

Hanayo: Harnessing Wave-like Pipeline Parallelism for Enhanced Large Model Training Efficiency SC ’23, November 12–17, 2023, Denver, CO, USA

0.8

1.0

1.2

1.4

1.6

1.8

Th
ro

ug
hp

ut
(S

eq
ue

nc
es

/S
)

 PC(D=1,P=8) FC(D=1,P=8) TACC(D=1,P=8) TC(D=1,P=8)

G D C H-2 H-4 H-8

1.5

2.0

2.5

3.0

3.5 PC(D=2,P=4)

G D C H-2 H-4 H-8

 FC(D=2,P=4)

G D C H-2 H-4 H-8

 TACC(D=2,P=4)

G D C H-2 H-4 H-8

 TC(D=2,P=4)

Figure 9: Throughput of training the Bert-style model on totally 32 GPUs from 4 different clusters. PC and FC refer to the two
local clusters where the NVIDIA A100 GPUs are partially and fully connected with NVLink. TACC refers to the Lonestar6
cluster from TACC and TC refers to the cloud server of Tencent. As for the methods, G stands for GPipe, D stands for DAPPLE,
C stands for Chimera-wave, and H-X stands for Hanayo with X waves.

Another observation from this experiment is that Hanayo’s op-
timal wave configuration can vary with the communication envi-
ronment. The more waves used, the greater the communication
required in one iteration. Although most communication can be
covered by computation, there is still more uncovered communi-
cation, particularly cross-communication. In servers with full (FC)
or partial connections (PC) via NVLink and the Tencent server,
which also has NVLink, throughput increases with the number of
waves(except for the first setting where the wave number equals 8).
This indicates that the improvements brought about by the waves
outweigh the additional communication overhead. For clusters with
poor interconnection, such as TACC, the optimal wave number will
be lower since the extra communication incurs a higher cost.

In conclusion, Hanayo demonstrates superior adaptability across
various environments and consistently outperforms state-of-the-
art methods. Better topological structures and higher bandwidth
further enhance Hanayo’s performance.

5.3 Obtaining The Best Performance For Each
Scheme

Before delving into scaling, we first describe howwe obtain the best
throughput data for each pipeline parallelism scheme. In Figure
10, we present the search space for each method under the setting
where 32 GPUs are used to train the GPT and BERT models men-
tioned earlier, using the TACC Lonestar6 cluster. The batch size is
set to 4 and 8 to maximize GPU memory usage. For each method,
we tested the pipeline and data parallelism size combinations of (8,
4), (16, 2), and (32, 1). The absence of data in certain areas indicates
that the respective method caused an Out of Memory (OOM) error.
It is worth noting that we do not list the wave configuration of

OOM OOM

OOM OOM

OOM OOM

OOM OOM

Figure 10: Part of the performance search for the four meth-
ods of training the Bert-style model on 32 V100 GPUs from
TACC. The configurations with the highest throughput are
chosen as targets to be used for further comparison.

Hanayo in this figure. Instead, we searched for the best wave num-
ber under each parallelism configuration and displayed them in
the corresponding locations. Ultimately, we selected the (D=4, P=8)
configuration for all methods, as it yields the highest performance,
and chose the number of waves for Hanayo as 2.

SC ’23, November 12–17, 2023, Denver, CO, USA Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You

5.4 Weak Scaling
In this section, we evaluate Hanayo’s efficiency under weak scal-
ing settings, where we maintain the same amount of computation
per device while incrementally increasing the number of devices
used from 8 to 32. The total batch size is increased from 2 to 8.
All throughput data were selected using the approach described
in the previous section. The results are displayed in Figure 11. In
the three sets of experiments, Hanayo outperforms Chimera by
8.19%, 8.11% and 8.13%, DAPPLE by 33.7%, 33.2% and 33.1%, and
GPipe by 33.4%, 33.3% and 33.3%. This can be primarily attributed
to the reduced bubble size in Hanayo’s wave-like structure. De-
spite the lower bandwidth of GPUs in the TACC Lonestar6 cluster,
the advantages of waves still outweigh the extra communication
overhead.

Weak scaling is employed to measure a system’s ability to main-
tain computational efficiency as the number of devices and the scale
of tasks increase simultaneously. From the results, we can observe
that the parallel efficiency is 100.1% and 99.8%. The reason why
the efficiency exceeds 100% is that GPUs are better at processing
batches of data at the same time thanks to their ability of paral-
lel computing. This demonstrates that Hanayo can be scaled to
train larger data batches using larger clusters while maintaining
reasonable efficiency.

devices=8 devices=16 devices=32
0

1

2

3

4

5

6

Th
ro

ug
hp

ut
s(

Se
te

nc
es

/S
)

GPipe
DAPPLE
Chimera-wave
Hanayo

Figure 11: Weak scaling for Bert-style model. The number
of devices scales from 8 to 32 while the batch size increases
proportionally

5.5 Strong Scaling
Strong scaling is characterized by maintaining a constant task size
while increasing the number of processors. In the context of train-
ing a large language model, we attempt to use more GPUs to train
the model with a fixed data batch. Here, we use a batch size of 4,
which already reaches Lonestar6’s 40GB memory limit. We then in-
crease the number of GPUs from 8 to 16 and 32, examining whether
the total throughput increases proportionally. The results can be
found in Figure 12. GPipe and DAPPLE encounter OOM when us-
ing 8 GPUs and achieve similar throughput in the other two cases.
Hanayo consistently attains the highest throughput in all three
tested cases, outperforming GPipe and DAPPLE by 33.3% and 33.8%
and Chimera by 8.8%, 8.1% and 8.7%.

Comparing the three sets of data, we can calculate the speedup
of Hanayo to be 188.4% and 337.5%. This demonstrates its ability to
accelerate a specific task with more GPUs. A typical scenario would
involve fine-tuning, in which users seek to adjust the released public

model weights to achieve better performance on downstream tasks
with a small amount of additional training data. As shown in the
figure, Hanayo is well-suited to handle this situation.

devices=8 devices=16 devices=32
0

1

2

3

4

5

Th
ro

ug
hp

ut
s(

Se
te

nc
es

/S
)

GPipe
DAPPLE
Chimera
Hanayo

Figure 12: Strong scaling for Bert-style model. We speed up a
fixed batch of training with more devices, from 8 to 32.

6 RELATEDWORK
Pipeline Parallelism Scheduling Algorithms. There has been
a surge in recent research focused on large model training, with
some of it centering around the pipeline parallelism scheduling algo-
rithms. Among the earliest efforts were GPipe [12] and PipeDream
[10], which remains one of the most widely used Pipeline methods.
More recent works such as DAPPLE [7] and Chimera [18] aim to
reduce the bubble ratio in pipeline parallelism by utilizing different
scheduling strategies, thereby enhancing the efficiency of large
model training. WPipe[40] proposed a scheme that achieved better
memory efficiency and fresher weight updates in asynchronous
pipeline parallelism. The author also posited its potential applica-
tion in GPipe. Our work builds upon these efforts by presenting a
more universal scheduling approach for pipeline parallelism, based
on a thorough analysis of state-of-the-art pipeline parallelism meth-
ods. In our integrated pipeline framework, we use a performance
model with adaptability to choose from various pipeline parallelism
strategies to attain optimal performance.

Runtime Systems for Pipeline Parallelism.Many researchers
have explored how to build runtime systems that support flexible
pipeline parallelism. One early attempt was torchGPipe [14], which
implemented GPipe-style pipeline parallelism based on PyTorch’s
eager execution framework. DeepSpeed [30] and Megatron-LM
[23] also support pipeline parallelism in their training engines us-
ing a 1F1B style. Fairscale [1] provides experimental support for
pipeline parallelism using PyTorch RPC [26] with RemoteModule
and message passing. Sagemaker [13] offers a flexible parallel pro-
gramming interface that allows for partitioning of arbitrary models
and pipeline parallelism with minimal code changes. In Hanayo,
we have designed and implemented a runtime system that is decou-
pled from the pipeline parallel scheduling algorithms. This allows
the runtime system to support any of the current pipeline paral-
lelism scheduling algorithms and provides an interface for users to
customize the scheduling algorithm.

Techniques for Large Model Training. The field of large
model training can be categorized into two main areas: 1) Hy-
brid Parallelism: Megatron-LM [23] combines tensor parallelism
and pipeline parallelism for large model training, utilizing tensor

Hanayo: Harnessing Wave-like Pipeline Parallelism for Enhanced Large Model Training Efficiency SC ’23, November 12–17, 2023, Denver, CO, USA

parallelism within nodes and pipeline parallelism between nodes.
ColossalAI [2] proposed other tensor parallel methods, such as
2D parallelism [38] and sequence parallelism [19], which can be
combined with pipeline parallelism. 2) Memory Saving Techniques:
To reduce memory consumption during training, researchers have
developed techniques such as activation checkpointing [4, 15], mix
precision training [21], and the ZeRO optimizer [28] proposed by
DeepSpeed [30]. ZeRO and other works also support tensor offload
[8, 29, 31], which allows for the use of CPU memory or even NVMe
storage. These techniques are independent of pipeline parallelism
and can be combined to improve large model training.

7 CONCLUSION
Hanayo introduces a novel pipeline parallelism scheduling ap-
proach that decouples the relationship between the number of
stages and devices, leading to higher throughput, as well as an
efficient framework that enables communication and computation
overlap for any pipeline scheme. Scaling and adaptivity experi-
ments demonstrate Hanayo’s capability to handle various models,
diverse computational environments, and different scenarios, such
as large-scale training and fine-tuning. We believe that our pro-
posed method will benefit both academia and industry through its
efficiency and high usability.

ACKNOWLEDGMENTS
LIU designed and wrote the system and the experiments, wrote the
method and experiment-related parts in the paper, and participated
in improving the method. CHENG designed and proposed key
algorithms and structures, participated in paper writing, the im-
provement of codes implementation, and the experiments. ZHOU
participated in the improvement of code implementation, experi-
mental design and implementation, theoretical formula derivation,
and article writing. YOU supervised this work and gave important
insights.

This work used the Lonestar6 Cluster from TEXAS ADVANCED
COMPUTING CENTER(TACC) and the cloud service of Tencent.
We would like to thank them for their outstanding computing
resource and professional service. ChatGPT was utilized to polish
some of the texts in this paper. Yang You’s research group is being
sponsored by NUS startup grant (Presidential Young Professorship),
Singapore MOE Tier-1 grant, ByteDance grant, ARCTIC grant, SMI
grant and Alibaba grant.

REFERENCES
[1] Mandeep Baines, Shruti Bhosale, Vittorio Caggiano, Naman Goyal, Siddharth

Goyal, Myle Ott, Benjamin Lefaudeux, Vitaliy Liptchinsky, Mike Rabbat, Sam
Sheiffer, Anjali Sridhar, and Min Xu. 2021. FairScale: A general purpose modular
PyTorch library for high performance and large scale training. https://github.
com/facebookresearch/fairscale.

[2] Zhengda Bian, Hongxin Liu, Boxiang Wang, Haichen Huang, Yongbin Li, Chuan-
rui Wang, Fan Cui, and Yang You. 2021. Colossal-AI: A Unified Deep Learning
System For Large-Scale Parallel Training. arXiv preprint arXiv:2110.14883 (2021).

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[4] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep
nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[7] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, SiyuWang, Zhen Zheng, Chuan
Wu, Guoping Long, Jun Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei
Lin. 2020. DAPPLE: A Pipelined Data Parallel Approach for Training Large
Models. https://doi.org/10.48550/ARXIV.2007.01045

[8] Jiarui Fang, Zilin Zhu, Shenggui Li, Hui Su, Yang Yu, Jie Zhou, and Yang You.
2023. Parallel Training of Pre-TrainedModels via Chunk-Based DynamicMemory
Management. IEEE Transactions on Parallel and Distributed Systems 34, 1 (2023),
304–315. https://doi.org/10.1109/TPDS.2022.3219819

[9] Denis Foley and John Danskin. 2017. Ultra-Performance Pascal GPU and NVLink
Interconnect. IEEE Micro 37, 2 (2017), 7–17. https://doi.org/10.1109/MM.2017.37

[10] Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil
Devanur, Greg Ganger, and Phil Gibbons. 2018. PipeDream: Fast and Efficient
Pipeline Parallel DNN Training. https://doi.org/10.48550/ARXIV.1806.03377

[11] W Daniel Hillis and Guy L Steele Jr. 1986. Data parallel algorithms. Commun.
ACM 29, 12 (1986), 1170–1183.

[12] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. 2018. GPipe: Efficient Training of Giant Neural Networks using Pipeline
Parallelism. https://doi.org/10.48550/ARXIV.1811.06965

[13] Can Karakus, Rahul Huilgol, Fei Wu, Anirudh Subramanian, Cade Daniel, Derya
Cavdar, Teng Xu, Haohan Chen, Arash Rahnama, and Luis Quintela. 2021. Ama-
zon SageMaker Model Parallelism: A General and Flexible Framework for Large
Model Training. arXiv preprint arXiv:2111.05972 (2021).

[14] Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek, Boogeon
Yoon, Ildoo Kim, Sungbin Lim, and Sungwoong Kim. 2020. torchgpipe: On-the-fly
pipeline parallelism for training giant models. arXiv preprint arXiv:2004.09910
(2020).

[15] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He,
Jared Roesch, Tianqi Chen, and Zachary Tatlock. 2020. Dynamic tensor remateri-
alization. arXiv preprint arXiv:2006.09616 (2020).

[16] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[17] Shigang Li, Tal Ben-Nun, Salvatore Di Girolamo, Dan Alistarh, and Torsten
Hoefler. 2020. Taming unbalanced training workloads in deep learning with
partial collective operations. In Proceedings of the 25th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. 45–61.

[18] Shigang Li and Torsten Hoefler. 2021. Chimera: efficiently training large-scale
neural networks with bidirectional pipelines. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–14.

[19] Shenggui Li, Fuzhao Xue, Yongbin Li, and Yang You. 2021. Sequence parallelism:
Making 4d parallelism possible. arXiv preprint arXiv:2105.13120 (2021).

[20] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 10012–10022.

[21] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, et al. 2017. Mixed precision training. arXiv preprint arXiv:1710.03740
(2017).

[22] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model
training on GPU clusters using megatron-LM. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–15.

[23] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Anand Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei
Zaharia. 2021. Efficient Large-Scale Language Model Training on GPU Clusters
Using Megatron-LM. https://doi.org/10.48550/ARXIV.2104.04473

[24] NVIDIA. 2017. NVIDIA TESLA V100 GPU ARCHITECTURE. https://images.
nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.
(2017).

[25] NVIDIA. 2020. NVIDIA Collective Communications Library. https://developer.
nvidia.com/nccl

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[27] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the lim-
its of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683 (2019).

https://github.com/facebookresearch/fairscale
https://github.com/facebookresearch/fairscale
https://doi.org/10.48550/ARXIV.2007.01045
https://doi.org/10.1109/TPDS.2022.3219819
https://doi.org/10.1109/MM.2017.37
https://doi.org/10.48550/ARXIV.1806.03377
https://doi.org/10.48550/ARXIV.1811.06965
https://doi.org/10.48550/ARXIV.2104.04473
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://developer. nvidia.com/nccl
https://developer. nvidia.com/nccl

SC ’23, November 12–17, 2023, Denver, CO, USA Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You

[28] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero:
Memory optimizations toward training trillion parameter models. In SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 1–16.

[29] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong
He. 2021. Zero-infinity: Breaking the gpu memory wall for extreme scale deep
learning. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–14.

[30] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
Speed: System Optimizations Enable Training Deep Learning Models with Over
100 Billion Parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery amp; Data Mining (Virtual Event, CA, USA)
(KDD ’20). Association for Computing Machinery, New York, NY, USA, 3505–3506.
https://doi.org/10.1145/3394486.3406703

[31] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. {ZeRO-Offload}:
Democratizing {Billion-Scale} Model Training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 551–564.

[32] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1985. Learning
internal representations by error propagation. Technical Report. California Univ
San Diego La Jolla Inst for Cognitive Science.

[33] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[34] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam
Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay
Korthikanti, et al. 2022. Using DeepSpeed and Megatron to Train Megatron-
Turing NLG 530B, A Large-Scale Generative Language Model. arXiv preprint

arXiv:2201.11990 (2022).
[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[36] Boxiang Wang, Qifan Xu, Zhengda Bian, and Yang You. 2022. Tesseract: Paral-
lelize the Tensor Parallelism Efficiently. In Proceedings of the 51st International
Conference on Parallel Processing. 1–11.

[37] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian
Lester, Nan Du, Andrew M Dai, and Quoc V Le. 2021. Finetuned language models
are zero-shot learners. arXiv preprint arXiv:2109.01652 (2021).

[38] Qifan Xu, Shenggui Li, Chaoyu Gong, and Yang You. 2021. An efficient 2d method
for training super-large deep learning models. arXiv preprint arXiv:2104.05343
(2021).

[39] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher Aberger, and
Christopher De Sa. 2021. Pipemare: Asynchronous pipeline parallel dnn training.
Proceedings of Machine Learning and Systems 3 (2021), 269–296.

[40] PengCheng Yang, Xiaoming Zhang, Wenpeng Zhang, Ming Yang, and Hong Wei.
2022. Group-based Interleaved Pipeline Parallelism for Large-scale DNN Training.
In International Conference on Learning Representations. https://openreview.net/
forum?id=cw-EmNq5zfD

[41] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. 2018.
Imagenet training in minutes. In Proceedings of the 47th International Conference
on Parallel Processing. 1–10.

[42] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. 2016. Staleness-Aware Async-
SGD for Distributed Deep Learning. In Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence (New York, New York, USA)
(IJCAI’16). AAAI Press, 2350–2356.

https://doi.org/10.1145/3394486.3406703
https://openreview.net/forum?id=cw-EmNq5zfD
https://openreview.net/forum?id=cw-EmNq5zfD

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT IDENTIFICATION
This paper introduces WPipe, a wave-like pipeline parallelism strat-
egy that boasts a concise structure and practical applicability, along-
side a high-performance pipeline execution runtime to tackle the
challenges of pipeline strategy implementation. We have done our
experiments on four computing environments, and the throughput
of the training process depends on the GPUs and the interconnec-
tion between them. So if you want to get the same throughput
numbers as those in the paper, please use a cluster with the same
CPUs, GPUs, and GPU topology as described below. Also, please
make sure you use the same version of CUDA, gcc, PyTorch and
NCCL. But if you only want the check the relative relationship of
the performance of the parallelism scheme, the platform will not
be that important. Our evaluation is conducted on four platforms:
1)The Lonestar6 cluster from TACC(TEXAS ADVANCED COM-
PUTING CENTER), which has 32 GPU nodes. Each node has 3x
NVIDIA A100 PCIE 40GB and we only use GPU No.1 and 2 as they
are connected to the same socket. The CPUs on each node are 2x
AMD EPYC 7763 64-Core Processor ("Milan"). A node has 256 GB
RAM, 144GB /tmp partition on a 288GB SSD. 2)A Tencent CVM
cloud server named GN10Xp with Intel Xeon Cascade Lake 8255C
(2.5 GHz) CPU and 8 NVIDIA V100 GPUs with 32GB of memory.
The GPUs are connected with NVLink, and the interconnect con-
figuration is described in the V100 architecture whitepaper. 3)A
local server with AMD EPYC 7543 32-Core Processor and 8 NVIDIA
A100 80GB GPUs, with GPU 0 and 1, 2 and 3, 4 and 5, 6 and 7
connected with NVLink. 4)A local server with AMD EPYC 7742
64-Core Processor and 8 NVIDIA A100 80GB GPUs. All the GPUs
are connected to each other with NVLink. The operating system
that we use is Ubuntu 20.04.5 LTS, with cuda/11.3.1 and gcc-9.3.0.
The version of pytorch is 1.13.1 and we use NCCL 2.14.3.

REPRODUCIBILITY OF EXPERIMENTS
All our experiments follow the same process. For each computing
environment mentioned above, we first use the scheduler to load
the configuration file of the model and the parallelism scheme, then
the scheduler will generate the action list for each GPU and estab-
lish the NCCL backend for communication. Then the dataloader
would start to load the training data and distribute it among the
GPUs. Then we can start the training iteration. For a better un-
derstanding of the true performance of the parallelism, we only
measure the time between the start of the forward propagation and
the end of the flush operation after the backward propagation. As
we use 50 iterations to warm up before we measure the training
time cost for 50 iterations, the time we need for one experiment is
usually 2 to 3 minutes, which means it is very easy for other users
to reproduce the experiments. The scripts and codes of our exper-
iments will be released on GitHub if the paper can be published.
But you can still use existing pipeline parallelism frameworks to
reproduce our method. As we mentioned before, the performance
of the methods is related to the computing power of the GPUs and
their interconnections. But in general, despite the platform and

framework that you use, you can constantly get the result that our
proposed method is faster than Chimera, and Chimera is faster than
other methods like DAPPLE or GPipe. The throughput that you get
on your own platform may be different, but the relative relationship
between these methods will stay the same. In other words, you will
not need to use the same platform as us to reproduce the results in
the paper. The advantage of our proposed method can be proved
on most mainstream computing environments.

ARTIFACT DEPENDENCIES REQUIREMENTS
1. Hardware: WPipe is designed to enable large model training on
limited computing resources. So theoretically, you can use any GPU
that supports CUDA. As long as the total memory of all your GPUs
can hold the model weights and other intermediate tensors, you
can use WPipe to speed up your training process. 2. Operating
system: The experiments in our paper are carried out on Linux. We
recommend that you use Linux when training with WPipe. 3. Soft-
ware requirement: WPipe is written mainly in Python, and requires
Python3 and CUDA. Python libraries include pytorch, numpy, trans-
formers, and so on. The detailed Python library requirements will
be given in our github repository. 4. WPipe does not require specific
datasets. The datasets required are decided by the model and the
task that you are working on. The performance results in the paper
can be obtained using either random inputs or real data sets. If
you use real datasets, you can use text datasets like WikiText-2,
openwebtext, etc.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
Perform the following steps for installation and deployment:
1. Create a new Python environment using Miniconda3
or venv. And then clone the code repository for Wpipe.
This process may take approximately 5 minutes. git clone
https://github.com/MaruyamaAya/Wpipe 2. Install the required
dependencies listed in the requirements.txt file. This installation
may take about 5 to 10 minutes. pip install -r requirements.txt
4. The main entry point for the Python code can be found in
./wpipe/main.py. To enable multi-node multi-process startup, use
torch.distributed.launch. On clusters, SLURM or PBS is commonly
used for task submission and management. We provide sample clus-
ter startup scripts for Meluxina (./wpipe/meluxina_script/)
and TACC Lonestar6 (./wpipe/lonestar_script/). 5. To
obtain experimental results with the corresponding pa-
rameters, submit the SLURM script using sbatch. sbatch
./wpipe/meluxina_script/submit_Chimera_8node_128layer_2model.slurm

	Abstract
	1 Introduction
	2 Background
	2.1 Parallelism Technique for Training
	2.2 Synchronous Pipeline Parallelism
	2.3 Asynchronous Pipeline Parallelism

	3 HANAYO UNIFIED FRAMEWORK
	3.1 Motivation
	3.2 Transforming into Wave-like Pipelines
	3.3 More waves For Lower Bubble Ratio
	3.4 Theoretical Analysis

	4 Hanayo Runtime
	4.1 Implementation Scheme
	4.2 Overlap by Prefetching

	5 Evaluation
	5.1 Memory Consumption
	5.2 Adaptability Across Computing Clusters
	5.3 Obtaining The Best Performance For Each Scheme
	5.4 Weak Scaling
	5.5 Strong Scaling

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

